
212 Advanced Digital Systems

there are a couple of ways that this can be done. One approach is to explicitly renumber the XOR
terms to perform the flipping intrinsically. Another approach, the one taken here, is to maintain a
consistent XOR nomenclature and simply flip the bits between the input and the XOR functions. It is
convenient to adopt a common bit ordering convention across different CRC implementations, and
the XOR terms shown for the CRC-16 are written with the same convention used in the HEC logic:
MSB first. The actual bit-flipping in hardware is translated to a renumbering of the XOR input terms
by the logic implementation software being used without any penalty of additional gates.

Once the bits have been clocked through the XOR functions in the correct order, industry conven-
tion is that the CRC register itself is flipped bit-wise and, depending on the implementation, byte-
wise as well. The bit-wise flipping is always performed, and the byte-wise flipping is a function of
whether big-endian or little-endian ordering is used. Since all of this talk of bit shuffling may seem
confusing, Table 9.10 shows a step-by-step example of calculating a CRC-16 16 bits at a time across
the 32-bit data set 0x4D41524B using the big-endian convention.

Yet another CRC is the ubiquitous 32-bit CRC-32, which is used in Ethernet, FDDI, Fibre Chan-
nel, and many other applications. The CRC-32 polynomial is x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 +x2 + x + 1, and its LFSR implementation is shown in Fig. 9.12. Similar to

TABLE 9.9 CRC-16 Parallel Logic

CRC Bits 16-Bit XOR Logic 8-Bit XOR Logic

C0 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X12 X13 X15

C8 C9 C10 C11 C12 C13 C14 C15 D0 D1 D2
D3 D4 D5 D6 D7

C1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X12 X13 X14

C9 C10 C11 C12 C13 C14 C15 D1 D2 D3
D4 D5 D6 D7

C2 X0 X1 X14 C8 C9 D0 D1

C3 X1 X2 X15 C9 C10 D1 D2

C4 X2 X3 C10 C11 D2 D3

C5 X3 X4 C11 C12 D3 D4

C6 X4 X5 C12 C13 D4 D5

C7 X5 X6 C13 C14 D5 D6

C8 X6 X7 C0 C14 C15 D6 D7

C9 X7 X8 C1 C15 D7

C10 X8 X9 C2

C11 X9 X10 C3

C12 X10 X11 C4

C13 X11 X12 C5

C14 X12 X13 C6

C15 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X12 X14 X15

X7 C8 C9 C10 C11 C12 C13 C14 C15 D0 D1
D2 D3 D4 D5 D6

-Balch.book Page 212 Thursday, May 15, 2003 3:46 PM

Networking 213

the CRC-16, parallel CRC-32 logic is commonly derived for data paths of one, two, or four bytes in
width. A difference between the CRC-32 and those CRC schemes already presented is that the
CRC32’s state bits are initialized to 1s rather than 0s, and the final result is inverted before being
used. Table 9.11 lists the CRC-32 XOR terms for handling one, two, or four bytes per cycle.

As noted, the CRC-32 state bits are initialized with 1s before calculation begins on a new data set.
Words are byte-swapped and bit-flipped according to the same scheme as done for the CRC-16.
When the last data word has been clocked through the parallel logic, the CRC-32 state bits are in-
verted to yield the final calculated value. Table 9.12 shows a step-by-step example of calculating a
CRC-32 32 bits at a time using the same 32-bit data set, 0x4D41524B, as before.

CRC algorithms can be performed in software, and often are when cost savings is more important
than throughput. Due to their complexity, however, the task is usually done in hardware when high-
speed processing is required. Most modern networking standards place one or more CRC fields into

TABLE 9.10 Step-by-Step CRC16 Calculation

Operation Data

Initialize CRC-16 state bits 0x0000

First word to be calculated 0x4D41

Reorder bytes to end high-byte first after bit-flipping 0x414D

Flip bits for LSB-first transmission of high-byte then low-byte 0xB282

Clock word through XOR logic 0xAF06

Second word to be calculated 0x524B

Reorder bytes to end high-byte first after bit-flipping 0x4B52

Flip bits for LSB-first transmission of high byte then low byte 0x4AD2

Clock word through XOR logic 0x5CF4

Flip bits of CRC 0x2F3A

Optionally swap bytes of CRC for final result 0x3A2F

x1

+

x2

++

x3 x4

+

x5

+

x6 x7

+

x8

+

x9 x10

+

x11

+

x12 x13

+

x14 x15

x16

+

x17 x18 x19 x20 x21 x22

+

x23 x24

+

x25 x26

+

x27 x28 x29 x30 x31 x32

CRC MSb (C31)

CRC LSb (C0)

Data Input (MSb First)

FIGURE 9.12 CRC-32 LFSR.

-Balch.book Page 213 Thursday, May 15, 2003 3:46 PM

